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Abstract

Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many
fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and
toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell
models by following with different administration routes and penetrating through physiological barriers, subsequently
being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies
on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the
toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and
corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance,
physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In
these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha
(TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role
in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms
of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of
completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and
facilitate their wide application.
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Background
Graphene, which is isolated from crystalline graphite,
is a flat monolayer composed of single-atom-thick,
two-dimensional sheets of a hexagonally arranged
honeycomb lattice [1]. Because of its unique structural,
specific surface area and mechanical characteristics, the
functions and applications of graphene have gained
considerable attention since the discovery of the material
in 2004 [2, 3]. Graphene and its derivatives include mono-
layer graphene, few-layer graphene (FLG), graphene oxide
(GO), reduced graphene oxide (rGO), graphene nano-
sheets (GNS), and graphene nanoribbons, etc. [4–7].
GO is one of the most vital chemical graphene derivatives
of the graphene-family nanomaterials (GFNs), which

attracts increasing attention for its potential biomedical
applications. Graphene-based materials usually have sizes
ranging from several to hundreds of nanometer and
are 1-10 nm thick [8, 9], which is also the definition
of ‘nanoparticles’ or ‘nanomaterials’. Due to their ex-
ceptional physical and chemical properties, graphene
materials have been widely used in various fields, inclu-
ding energy storage; nanoelectronic devices; batteries
[10–12]; and biomedical applications, such as antibac-
terials [13, 14], biosensors [15–18], cell imaging [19, 20],
drug delivery [8, 21, 22], and tissue engineering [23–25].
Along with the application and production of GFNs

increasing, the risk of unintentional occupational or
environmental exposure to GFNs is increasing [26]. And
recently, there are some investigation on GFNs exposure
in occupational settings and published data showed that* Correspondence: shaolongquan@smu.edu.cn
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the occupational exposure of GFNs had potential tox-
icity to the workers and researchers [27–29]. GFNs can
be delivered into bodies by intratracheal instillation [30],
oral administration [31], intravenous injection [32], in-
traperitoneal injection [33] and subcutaneous injection
[34]. GFNs can induce acute and chronic injuries in
tissues by penetrating through the blood-air barrier,
blood-testis barrier, blood-brain barrier, and blood-
placenta barrier etc. and accumulating in the lung, liver,
and spleen etc. For example, some graphene nanomate-
rials aerosols can be inhaled and substantial deposition
in the respiratory tract, and they can easily penetrate
through the tracheobronchial airways and then transit
down to the lower lung airways, resulting in the subse-
quent formation of granulomas, lung fibrosis and adverse
health effects to exposed persons [2, 29]. Several reviews
have outlined the unique properties [35, 36] and summa-
rized the latest potential biological applications of GFNs
for drug delivery, gene delivery, biosensors, tissue engin-
eering, and neurosurgery [37–39]; assessed the biocom-
patibility of GFNs in cells (bacterial, mammalian and
plant) [7, 40, 41] and animals (mice and zebrafish) [42];
collected information on the influence of GFNs in the soil
and water environments [43]. Although these reviews
discussed the related safety profiles and nanotoxicology of
GFNs, the specific conclusions and detailed mechanisms
of toxicity were insufficient, and the mechanisms of tox-
icity were not summarized completely. The toxicological
mechanisms of GFNs demonstrated in recent studies
mainly contain inflammatory response, DNA damage,
apoptosis, autophagy and necrosis etc., and those mecha-
nisms can be collected to further explore the complex
signalling pathways network regulating the toxicity of
GFNs. It needs to point out that there are several fac-
tors which largely influence the toxicity of GFNs, such
as the concentration, lateral dimension, surface struc-
ture and functionalization etc. Herein, this review presents
a comprehensive summary of the available information on
the mechanisms and regulating factors of GFNs toxicity in
vitro and in vivo via different experimental methods, with
the goals of providing suggestions for further studies of
GFNs and completing the toxicology mechanisms to
improve the biological safety of GFNs and facilitate
their wide application.

Toxicity of GFNs (in vivo and in vitro)
GFNs penetrate through the physiological barriers or
cellular structures by different exposure ways or admi-
nistration routes and entry the body or cells, eventually
resulting in toxicity in vivo and in vitro. The varying
administration routes and entry paths, different tissue
distribution and excretion, even the various cell uptake
patterns and locations, may determine the degree of the

toxicity of GFNs [44–46]. So to make them clear may be
helpful to better understand the laws of the occurrence
and development of GFNs toxicity.

Administration route
The common administration routes in animal models
include airway exposure (intranasal insufflation, intratra-
cheal instillation, and inhalation), oral administration,
intravenous injection, intraperitoneal injection and sub-
cutaneous injection. The major exposure route for GFNs
in the working environment is airway exposure, thus
inhalation and intratracheal instillation are used mostly
in mice to simulate human exposure to GFNs. Though
the inhalation method provides the most realistic simu-
lation to real life exposure, instillation is more effective
and time-saving method, and GFNs was found that caus-
ing longer inflammation period using instillation (intratra-
cheal instillation, intrapleural installation and pharyngeal
aspiration) than inhalation [24, 30, 47, 48]. GFNs were in-
vestigated to deposit in the lungs and accumulate to a
high level, which retained for more than 3 months in the
lungs with slow clearing after intratracheal instillation
[49]. Intravenous injection is also widely used to assess the
toxicity of graphene nanomaterials, and graphene
circulates through the body of mice in 30 min, accumula-
ting at a working concentration in the liver and bladder
[32, 50–52]. However, GO derivatives had rather finite
intestinal adsorption and were rapidly excreted in adult
mice via oral administration [31, 53]. Nano-sized GO
(350 nm) caused less mononuclear cells to infiltrate sub-
cutaneous adipose tissue after subcutaneous injection in
the neck region compared to micron-sized GO (2 μm)
[34]. GO agglomerated near the injection site after intra-
peritoneal injection, and numerous smaller aggregates
settled in the proximity of the liver and spleen serosa
[31, 33]. Experiments on skin contact with or skin perme-
ation of GFNs were not found in the papers reviewed
here, and there is insufficient evidence available to con-
clude that graphene can penetrate intact skin or skin
lesions. The route of nasal drops, which has been widely
used to test the neurotoxicity or brain injury potential of
other nanomaterials, was not mentioned in the papers
reviewed here.

GFNs entry paths
GFNs reach various locations through blood circulation
or biological barriers after entering the body, which
results in varying degrees of retention in different
organs. Due to their nanosize, GFNs can reach deeper
organs by passing through the normal physiological
barriers, such as the blood-air barrier, blood-testis
barrier, blood-brain barrier and blood-placental barrier.
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Blood-air barrier
The lungs are a potential entrance for graphene nano-
particles into the human body through airway. The
inhaled GO nanosheets can destroy the ultrastructure
and biophysical properties of pulmonary surfactant (PS)
film, which is the first line of host defense, and emerge
their potential toxicity [54]. The agglomerated or dis-
persed particles deposit on the inner alveolar surface
within the alveoli and then be engulfed by alveolar
macrophages (AMs) [55]. Clearance in the lungs is facili-
tated by the mucociliary escalator, AMs, or epithelial
layer [56–58]. However, some small, inhaled nanoparti-
cles infiltrate the intact lung epithelial barrier and can
then transiently enter the alveolar epithelium or the
interstitium [59, 60]. Intratracheally instilled graphene
can redistribute to the liver and spleen by passing
through the air-blood barrier [61]. The study of blood-
air barrier may draw an intensive attention, since the
researchers and workers occupational exposure of GFNs
usually through inhalation. To make clear how the
blood-air barrier plays a role in the toxicity of GFNs
may become a research hot topic.

Blood-brain barrier
The intricate arrangement of the blood-brain barrier,
consisting of numbers of membrane receptors and
highly selective carriers, only exerts subtle influence on
blood circulation and the brain microenvironment com-
pared to the peripheral vascular endothelium [62]. The
research on the mechanism of blood-brain barrier had
made some progress involved in diseases and nano-
toxicity. Matrix-assisted laser desorption/ionization
(MALDI) mass spectrometry imaging (MSI) revealed
that rGO, with an average diameter of 342 ± 23.5 nm,
permeated through the paracellular pathway into the
inter-endothelial cleft in a time-dependent manner by
decreasing the blood-brain barrier paracellular tight-
ness [63]. In addition, graphene quantum dots (GQDs),
with a small size of less than 100 nm, can cross through
the blood-brain barrier [64]. Studies on how graphene
materials pass through the blood-brain barrier and cause
neurotoxicity are very rare, and more data are needed
to draw a conclusion.

Blood-testis barrier
The blood-testis and blood-epididymis barriers are
well known for being some of the tightest blood-
tissue barriers in the mammalian body [65]. GO parti-
cles with diameters of 54.9 ± 23.1 nm had difficulty
penetrating the blood-testis and blood-epididymis
barriers after intra-abdominal injection, and the sperm
quality of the mice was not obviously affected even at
300 mg/kg dosage [66].

Blood-placenta barrier
The placental barrier is indispensable in maintaining
pregnancy, as it mediates the exchange of nutrients and
metabolic waste products, exerts vital metabolic func-
tions and secretes hormones [67]. A recent review
suggested that the placenta does not provide a tight
barrier against the transfer of nanoparticles to foetuses,
specifically against the distribution of carbonaceous
nanoparticles to and in the foetus [42]. It was suggested
that rGO and gold particles (diameter of 13 nm) are
barely present or are absent in the placenta and foetus
in late gestation after intravenous injection [44, 68].
However, other reports showed that transplacental trans-
fer does occur in late gestational stages [69, 70]. Much
attention had been paid to the developmental toxicity of
nanomaterials, and reports showed that many nanopar-
ticles did cross the placental barrier and strongly influ-
enced the development of embryos [71–75]. But studies
of the exposure to graphene materials through the
placenta barrier are deficient, and how these particles
transfer to embryos should be evaluated in detail in the
future.
These four barriers were the most frequently men-

tioned barriers in the literature, and other barriers have
not been evaluated in recent studies, such as skin
barriers, which have not been mentioned in any of the
hundreds of GFNs toxicity studies searched. Moreover,
the mechanism by which GFNs pass through these
barriers is not well understood, and more systematic
investigations are urgently needed.

Distribution and excretion of GFNs in tissue
The absorption, distribution, and excretion of graphene
nanoparticles may be affected by various factors inclu-
ding the administration routes, physicochemical proper-
ties, particle agglomeration and surface coating of GFNs.
The different administration routes influence the dis-

tribution of GFNs, for example, intratracheally instilled
FLG passing through the air-blood barrier mainly accu-
mulated and was retained in the lungs, with 47 %
remaining after 4 weeks [61]. Intravenously administered
GO entered the body through blood circulation and was
highly retained in the lung, liver, spleen and bone
marrow, and inflammatory cell infiltration, granuloma
formation and pulmonary edema were observed in the
lungs of mice after intravenous injection of 10 mg kg/
body weight GO [49]. Similarly, high accumulation of
PEGylated GO derivatives was observed in the reticulo-
endothelial (RES) system including liver and spleen after
intraperitoneal injection. In contrast, GO-PEG and FLG
did not show detectable gastrointestinal tract absorption
or tissue uptake via oral administration [31].
The different properties of GFNs, such as their size,

dose and functional groups, always lead to inconsistent
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results in the distribution profiles of graphene. For in-
stance, Zhang et al. found that GO was mainly entrapped
in mouse lungs [49]; however, Li et al. observed that GO
accumulated in mouse liver [76]. Notably, small GO
sheets, with diameters of 10–30 nm, were mainly distri-
buted in the liver and spleen, whereas larger GO sheets
(10–800 nm) mainly accumulated in the lungs [49, 52,
77]. If the size of GO is larger than the size of the vessels,
GO usually becomes stuck in the arteries and capillaries
in the proximity of the injection site. The accumulation of
GO in the lungs was shown to increase with an increase
in the injected dose and size, but that in the liver sig-
nificantly decreased [78]. Coating biocompatible polymers
onto GO also affects the biodistribution, for instance, the
intravenous injection of GO-PEG and GO-dextran (GO-
DEX) accumulate in the reticuloendothelial system (RES),
including the liver and spleen, without short-term toxicity
[31, 79]. Moreover, the charge of plasma proteins and ad-
sorption of GO by plasma proteins also affects the biodis-
tribution [34].
The excretion and clearance of GFNs vary in different

organs. In the lungs, observations indicated that NGO is
drawn into and cleared by AMs, which might be elimi-
nated from the sputum through mucociliary clearance
or other ways [57], and 46.2 % of the intratracheally
instilled FLG was excreted through the faeces 28 d after
exposure [61]. In the liver, nanoparticles can be elimi-
nated thorough the hepato-biliary pathway following the
biliary duct into the duodenum [80]. In addition, PEGy-
lated GNS that mainly accumulates in the liver and
spleen can be gradually cleared, likely by both renal and
faecal excretion. As recently reviewed, GO sheets larger
than 200 nm are trapped by splenic physical filtration,
but small sizes (approximately 8 nm) can penetrate the
renal tubules into the urine and be rapidly removed
without obvious toxicity [81]. The excretion paths of
GFNs have not yet been clearly explained, but renal and
faecal routes appear to be the main elimination routes
for graphene.
Recently, the distribution and excretion/toxicity strat-

egy has become an important part of nano-toxicological
studies. To date, several controversial results regarding
the distribution and excretion of graphene in vivo have
been reported in several papers, and a systematic evalu-
ation of the toxicokinetics of GFNs is still needed. The
metabolism and excretion of nanomaterials are long-
period processes, however, the recent studies of GFNs
had been limited to short-term toxicological assess-
ments, and the long-term accumulation and toxicity of
GFNs on different tissues remain unknown. Therefore,
long-term studies on the deposition and excretion of
GFNs need to be performed using different cells and
animals to ensure the materials’ biosafety before utilization
in human biomedical applications.

Uptake and location of GFNs in cells
The uptake and location of GFNs have also been
observed to exert different effects in different cell lines.
Graphene is taken up into cells via various routes [82, 83].
Basically, the physicochemical parameters such as the
size, shape, coating, charge, hydrodynamic diameter,
isoelectric point, and pH gradient are important to allow
GO to pass through the cell membrane [84]. As stated
previously, nanoparticles with diameters <100 nm can
enter cells, and those with diameters <40 nm can enter
the nucleus [85]. For example, GQDs possibly penetrate
cell membranes directly, rather than through energy-
dependent pathways [86, 87]. Larger protein-coated
graphene oxide nanoparticles (PCGO) (~1 μm) enter cells
mainly through phagocytosis, and smaller PCGO nano-
particles (~500 nm) enter cells primarily through clathrin-
mediated endocytosis [88]. GO sheets could adhere and
wrap around the cell membrane, insert in the lipid bilayer
or be internalized into the cell as a consequence of inter-
actions with cells [89]. Similarly, PEGylated reduced
graphene oxide (PrGO) and rGO were shown to adhere
onto the lipid bilayer cell membrane prominently due to
the interaction of hydrophobic, unmodified graphitic
domains with the cell membrane [90, 91]. Consequently,
it was suggested that prolonged exposure to or a high
concentration of graphene induces physical or biological
damage to the cell membrane, along with destabilization
of actin filaments and the cytoskeleton [92].
Current data demonstrates that GO sheets interact

with the plasma membrane and are phagocytosed by
macrophages. Three major receptors on macrophages
take part in the phagocytosis of GNS: the Fcg receptor
(FcgR), mannose receptor (MR), and complement recep-
tor (CR). Furthermore, FcgR is a key receptor in the
mediated phagocytic pathway [90, 93, 94]. The protein
corona of GO promotes the recognition by macrophage
receptors, especially the IgG contained within the pro-
tein corona. Macrophages were observed to undergo
prodigious morphological changes upon contact with
GO [34]. After internalization, graphene accumulated in
the cell cytoplasm, perinuclear space, and nucleus,
which induced cytotoxicity in murine macrophages by
increasing intracellular ROS through depletion of the
mitochondrial membrane potential and by triggering
apoptosis through activation of the mitochondrial
pathway [83]. The possible interactions and accumula-
tion sites of GFNs are summarized in Fig. 1.

Toxicity of GFNs in organs
The toxicity and biocompatibility of GFNs has been
observed and assessed through theoretical and animal
model studies. At present, there are a mass of data dem-
onstrating the toxicity of GFNs in different organs or
systems in animals, so that it is hard to list all the data
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in this review. Thus we summarized a certain number
literature and chose some in vivo toxicological studies of
GFNs listed in Table 1.

Toxicity in internal organs
GO can result in acute inflammation response and
chronic injury by interfering with the normal physio-
logical functions of important organs [32, 81]. Oral
gavage experiments did not show detectable absorption
of GO through the gastrointestinal tract [95]. Interes-
ting, a low dose of GO caused serious damage to the
gastrointestinal tract after maternal mice drank a GO
suspension rather than a high-dose of GO because a low
dose of GO without agglomeration can easily attach to
the gastrointestinal surface and cause destruction
through its abundant sharp edges [53]. GFNs caused
inflammation and remained in the lung on day 90 after a
single intratracheal instillation, and even translocated to
lung lymph nodes by a nose-only inhalation [96, 97]. A
high dose of GO that forms aggregations can block pul-
monary blood vessels and result in dyspnea [50, 98], and
platelet thrombi were observed at high concentrations
of 1 and 2 mg/kg body weight via intravenous injec-
tion [89]. GO reportedly disrupted the alveolar-
capillary barrier, allowing inflammatory cells to infil-
trate into the lungs and stimulate the release of pro-
inflammatory cytokines [99]. Fibrosis and inflamma-
tion could be verified by the increased levels of the
protein markers collagen1, Gr1, CD68 and CD11b in
the lungs. The use of Tween 80 to disperse FLG or a
pluronic surfactant to disperse graphene was

suggested to reduce the likelihood of lung fibrosis for-
mation in cells or mice, whereas lung fibrosis was ob-
served when graphene was suspended with bovine
serum albumin (BSA) [100]. In addition, radioactive
isotopes can be delivered into the lungs, accompanied
by a depth distribution of 125I-NGO in the lungs, and
the isotopes might deposit there and result in muta-
tions and cancers [30]. However, recent publications
claimed no obvious pathological changes in mice ex-
posed to low dosages of GO and functionalized gra-
phene by intravenous injection, including aminated
GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-
PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and
GO-PEG; only GO-PEG and GO-PAA induced less toxicity
than pristine GO in vivo [31, 79, 89]. So the functional
groups of GFNs and the working concentration or ag-
gregate state largely influence the toxicity of GFNs.
Recently, the ways to modify the functional group of
GFNs, decrease the working concentration or change
the aggregate condition are usually used to decrease
the toxicity of GFNs.

Toxicity in the central nervous system
Graphene has largely benefited neurosurgery with the
application of drug/gene delivery for brain tumour treat-
ment, intracranial and spinal biocompatible devices,
biosensing and bioimaging techniques. Studies regarding
the potentialities or risks of graphene in the brain have
emerged. In the chicken embryo model, pristine gra-
phene flakes decreased the ribonucleic acid level and the
rate of deoxyribonucleic acid synthesis, leading to

Fig. 1 Graphene materials and their biological interactions. (A) A parameter space for the most widely used graphene materials can be
described by the dimensions and surface functionalization of the material, the latter defined as the percentage of the carbon atoms in
sp3 hybridization. Green squares represent epitaxially grown graphene; yellow, mechanically exfoliated graphene; red, chemically exfoliated
graphene; blue, graphene oxide. Note that a number of other graphene-related materials (such as graphene quantum dots and graphene
nanoribbons) are also being used in experiments. (B) Possible interactions between graphene-related materials with cells (the graphene
flakes are not to scale). (a) Adhesion onto the outer surface of the cell membrane. (b) Incorporation in between the monolayers of the
plasma membrane lipid bilayer. (c) Translocation of membrane. (d) Cytoplasmic internalization. (e) Clathrin-mediated endocytosis. (f) Endosomal or
phagosomal internalization. (g) Lysosomal or other perinuclear compartment localization. (h) Exosomal localization. The biological outcomes from
such interactions can be considered to be either adverse or beneficial, depending on the context of the particular biomedical application. Different
graphene-related materials will have different preferential mechanisms of interaction with cells and tissues that largely await discovery. [90]
Copyright (2014), with permission from American Association for Advancement of Science
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Table 1 Toxicity of GFNs in organs
Graphene family
nanomaterials

Physiochemial properties
and functionalization

Animals Dose and time incubation Effects Reference

Nanoscale graphene oxide
(NGO)

No information C57BL/6 mice 0, 1, 5, 10 mg/kg, intratracheal instillation
0 h, 24 h, 48 h, 72 h and 1 week

Result in acute lung injury (ALI) and chronic
pulmonary fibrosis

[30]

Few layer graphene (FLG) No information ICR mice 0.1, or 1 mg/mL, oral gavage or intratracheal
instillation 3 or 28 days

Intratracheally instilled FLG resulted in acute
lung injury and pulmonary edema, FLG didn’t
show detectable absorption through the
gastrointestinal tract by oral gavage.

[61]

Graphene platelets (GPs) No information Mice inhalation exposure, 1 day-6 weeks GP caused acute inflammation in lung at
1 day, and alleviated inflammation in lung
after 6 weeks

[48]

Graphene nanoplatelets
(GPs)

Thickness of 10 nm
Size of 5–30 μm

Female C57BL/6
strain mice

50 μg per mouse, pharyngeal aspiration or
intrapleural installation, 24 h- 7 days

Large GP were inflammogenic in both the
lung and the pleural space

[24]

GO Thickness of 0.93 nm
Size of 150–250 nm

Sprague-Dawley rats 0.5 or 4 mg/m3, inhalation exposure,
single 6 h

The single inhalation exposure to GO induce
minimal toxic responses in rat lungs

[235]

GO Thickness of 0.9 nm
size of l-GO: 1–5 μm
size of s-GO:100–500 nm

Male ICR mice 1.0 mg/kg, intravenous injected, 24 h Accumulated mainly in the liver and lungs [78]

GO Thickness of < 4 nm
size of l-GO:237.9 ± 79.3 nm; size of
s-GO: 54.9 ± 23.1 nm

Male and female
ICR-strain mice

24 mg/kg, tail vein injected, 5 days Didn’t effect pup numbers, sex ratio, weights,
pup survival rates or pup growth, low toxicity
for male reproduction

[66]

GO Thickness of ~1.0 nm
sizes of 10–800 nm

Kun Ming mice 1,10 mg/ kg, intravenous injection 14 days Led to high accumulation, long-time retention,
pulmonary edema and granuloma formation

[49]

NGO-PEG Thickness of 1 nm
size of 10–800 nm

Male Kunming mice 5 mg/kg, tail intravenous injection
10 min-24 h

NGO-PEG alleviated acute tissue injuries,
decreased the early weight loss

[81]

GO
GO-PEG
RGO-PEG
nRGO-PEG

Thickness of 0.94,1.22, 4.43 and
5.66 nm,
size of 450, 25, 50 and 27 nm

Balb/c mice 4 mg/kg, intraperitoneal injection
1, 7 and 30 days

Accumulated in the reticuloendothelial (RES)
system including liver and spleen over a
long time

[31]

GO
Graphene quantum dots
(GQD)

Thickness of GO, GQD: 0.5–1 nm
sizes of GO, GQD: 3–5 nm

Balb/c mice 20 mg/kg intravenous injection or
intraperitoneal injection 14 days

GO appeared toxic and caused death
GQD revealed no accumulation in organs and
caused low cytotoxicity

[176]

Purified graphene oxide
(pGO)

Thickness of 1–2 nm,
lateral dimension of
100–500 nm

Female C57Bl/6 mice 50 μg/animal, intraperitoneal injection
24 h, 7 days,

Induced moderate inflammation and granuloma
formation following

[99]

GO Thickness of 3.9 and 4.05 nm,
size of 350 nm and 2 μm

C57BL/6 male mice Series concentrations, subcutaneous
injection21 days

The micro-size of GO induced much stronger
inflammation responses than the nanosized GO

[34]

GO Size of 1110 to 16 200 nm C57BL/6 J mice 2 or 20 mg/kg, subcutaneous and
intraperitoneal injection

Both GO and a reduction of GO result in immune
cell infiltration, uptake, and clearance.

[84]

RGO-iron oxide
nanoparticles (rGO-IONP)

Thickness of ˂10 nm
Size of 15.0 ± 2.0 nm

Female Balb/c mice 400 μg, subcutaneous injection, RGO–IONP can effectively inactivate multiple-drug-
resistant bacteria in subcutaneous abscesses

[236]
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Table 1 Toxicity of GFNs in organs (Continued)

GO
GO-PEG

Thickness of 0.94, 1.22, 4.43
and 5.66 nm,
size of 450, 25, 50 and 27 nm

Female balb/c mice 100 mg/kg, Oral administration; 50 mg/kg,
intraperitoneal injection, 1, 7 and 30 days

No obvious tissue uptake via oral administration,
indicating the rather limited intestinal
adsorption of those nanomaterials

[237]

RGO sizes of small rGO: 87.97 ± 30.83,
sizes of large rGO:472.08 ± 249.17 nm

Male C57black/6
mice

60 mg/kg, oral gavage, 5 days RGO affected general locomotor activity, balance,
and neuromuscular coordination, but showed
little change in exploratory, anxiety-like, or
learning and memory behaviors.

[31]
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harmful effects on brain tissue development and the
atypical ultrastructure was observed in the brain [101].
The recent researches of GFNs in the central nervous
system are mostly involved in the application rather than
the toxicity. The data of the toxic study on GFNs is
underway.

Toxicity in reproduction and development system
Pristine graphene reduced the vascularization of the
heart and the density of branched vessels after injection
into fertilized chicken eggs followed by incubation for 19
d [101]. GO and rGO damage zebrafish embryos by
influencing the embryo hatching rate and body length in
a concentration-dependent manner. Although no obvi-
ous malformation or mortality was observed in exposed
zebrafish embryos [102], GO adhered to and was wrapped
in the chorion of the zebrafish embryos, causing remar-
kable hypoxia and hatching delay. GO aggregates were
retained in many organelles, such as the eyes, heart, yolk
sac, and tail of the embryos, and apoptosis and reactive
oxygen species (ROS) generation were observed in these
regions [103].
The GFNs exert different toxicological effects on male

or female reproductive system. Data showed that GO
exerted very low or nearly no toxic effects on male
reproduction even at a high dose via intra-abdominal
injection [66]. Additionally, rGO did not change the
serum estrogen levels of non-pregnant female mice. The
condition is different in the female mouse: mouse dams
could give birth to healthy offspring after rGO injection
before mating or during early gestation, and only a few
abnormal foetuses were present among the rGO-injected
dam litters. However, the pregnant mice had abortions
at all dose, and most pregnant mice died when the high
dose of rGO was injected during late gestation [44]. Not-
ably, the development of offspring in the high dosage
group was delayed during the lactation period. The high
dose of GO decreased the maternal mice’s water con-
sumption by oral exposure, which reduced milk produc-
tion and thus postponed the growth of offspring [53].
Though the findings indicate that GFNs are potentially
harmful to development, but data on reproductive and
developmental toxicity are still deficient. Studies of the
influence of GFNs on male and female reproduction
and development are still required to elucidate the
underlying toxicity mechanism.

Influence of haemocompatibility
GO release into the blood is ineluctable. The haemo-
compatibility of GO was found to be dependent on the
functional coating and the exposure conditions. GO
with submicron size resulted in the greatest haemo-
lytic activity, while aggregated graphene induced the
lowest haemolytic reaction. Pristine graphene and GO

demonstrated haemolytic effect up to 75 μg/mL [104].
GO-polyethylenimine (GO-PEI) exhibited notable toxicity
by binding to HSA, even at 1.6 μg/mL [105]. Carboxylated
graphene oxide (GO-COOH) showed significant cytoto-
xicity toward T lymphocytes at concentrations above
50 μg/mL and had good biocompatibility below 25 μg/
mL, whereas GO-chitosan nearly inhibited haemolytic
activity [106]. Until now, the corresponding risk of hae-
mocompatibility has remained largely unknown.
In conclusion, the lung injury induced by GFNs has

been studied in several studies, the results of which have
demonstrated inflammatory cell infiltration, pulmonary
edema and granuloma formation in the lungs. However,
only a few specific studies have evaluated in other or-
gans, such as the liver, spleen, and kidney, and the injury
symptoms, damage index and level of damage to these
internal organs were not fully investigated. Moreover,
studies on the neurotoxicity of GFNs are quite rare; no
data has revealed which nerves or brain areas experience
damage, nor have the related behavioural manifestations
been studied. The developmental toxicity of GFNs may
induce structural abnormalities, growth retardation, be-
havioural and functional abnormalities, and even death.
A study on the reproductive and developmental toxicity
of GFNs will be extremely significant and gain extensive
attention in the future. Almost all the GFNs toxicity
studies were short-period experiments, and no studies
have investigated long-term chronic toxic injury. How-
ever, based on studies of other nanomaterials toxicity,
long-term GFNs exposure may be an important factor
harming health [107–109]. Therefore, the long-term
study of GFNs is necessary.

Toxicity of GFNs in cell models
The cytotoxicity of GFNs in vitro has been verified in
various cells to change the cell viability and morphology,
destroy the membrane integrity, and induce DNA
damage [110–112]. GO or rGO decrease cell adhesion;
induce cell apoptosis; and enter lysosomes, mitochon-
dria, cell nuclei, and endoplasm [113]. GQDs entered
cells and induced DNA damage by the increased expres-
sion of p53, Rad 51, and OGG1 proteins in NIH-3 T3
cells [87]. However, GQDs did not pose significant tox-
icity to human breast cancer cell lines (at a dose of
50 μg/mL) or human neural stem cells (at a dose of
250 μg/mL) [114, 115]. GO derivatives dramatically
decreased the expression of differential genes that are
responsible for the structure and function of the cell
membrane, such as regulation of the actin cytoskeleton,
focal adhesion and endocytosis [89]. In rat pheochromo-
cytoma cells (PC12 cells), graphene and rGO caused
cytotoxic effects and mitochondrial injury, such as the
release of lactate dehydrogenase (LDH), an increase in
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the activation of caspase-3, and the generation of ROS
[82, 116].
Graphene can increase cell viability [117] or cause cell

death [118] depending on the cell line, type of graphene
material and the doseage. GO cytotoxicity was observed
in human fibroblasts and lung epithelial cells at concen-
trations above 20 μg/mL after 24 h, but minimal toxicity
was found in A549 cells at concentrations higher than
50 μg/mL [119]. The biological responses induced by
GO such as ROS, malondialdehyde (MDA), and LDH in-
creased, whereas superoxide dismutase (SOD) decreased
dose-dependently in HeLa cells [120]. However, GO-
molecular beacon (GO-MB) showed low cytotoxicity
even at 20 μg/mL in HeLa cells [121]. GO decreased the
viability of A549 cells, while the same concentration and
time of exposure increased the cell viability of CaCo2
colorectal carcinoma cells [122]. Another study reported
that GO dramatically enhanced the differentiation of
SH-SY5Y, accompanied by increasing neurite length and
the expression of neuronal marker MAP2 at low concen-
trations but that GO suppressed the viability of SH-
SY5Y cells at high doses (≥80 mg/mL) [123]. Functiona-
lized coatings on GO, such as GO-PEG [124] and GO-
chitosan [125], can profoundly attenuate the particles’
cytotoxicity by inhibiting the interactions between cells.
The toxicity of GFNs in vitro is summarized in Table 2.

Data on the cytotoxicity of graphene nanomaterials are
contrasting, and varying characteristics influence the re-
sults. The mechanisms and influencing factors of
toxicity need to be elucidated in detail.

Origins of GFNs toxicity
Reportedly, the characteristics of graphene, including its
concentration, lateral dimension, surface structure, func-
tional groups, purity and protein corona, strongly influ-
ence its toxicity in biological systems [2, 7, 104, 126–129].

Concentration
Numerous results have shown that graphene materials
cause dose-dependent toxicity in animals and cells, such
as liver and kidney injury, lung granuloma formation,
decreased cell viability and cell apoptosis [130–134]. In
vivo studies, GO did not exhibit obvious toxicity in mice
exposed to a low dose (0.1 mg) and middle dose
(0.25 mg) but induced chronic toxicity at a high dose
(0.4 mg). The high content of GO mainly deposited in
the lungs, liver, spleen, and kidneys and was difficult to
be cleaned by the kidneys via a single tail vein injection
[135]. Intriguingly, increasing the dose resulted in a dra-
matic decrease in the hepatic uptake but an increase in
the pulmonary uptake of s-GO by intravenous injection
[31], because the high dose of GO potentially surpassed
the uptake saturation or depleted the mass of plasma
opsonins, which consequently suppressed the hepatic

uptake. Moreover, an in vitro study reported that 20 μg/mL
GO nanosheets exhibited no cytotoxicity in A549 within
2 h of incubation, but a higher concentration (85 μg/mL)
decreased the cell viability to 50 % within 24 h [136, 137].
Lü et al. also demonstrated that GO had no obvious
cytotoxicity at low concentrations for 96 h in a human
neuroblastoma SH-SY5Y cell line, but the viability of cells
sharply decreased to 20 % after treatment with 100 mg/mL
GO for 96 h of incubation [123]. The results in HeLa cells,
NIH-3 T3 cells, and breast cancer cells (SKBR3, MCF7)
treated with graphene nanoribbons also showed a dose-
(10–400 mg/ml) and time-dependent (12–48 h) decrease in
cell viability [138]. Increasing concentrations of GO entered
the lysosomes, mitochondria, endoplasm, and cell nucleus
[119]. Several data indicated that rGO caused apoptosis-
mediated cell death at a lower dose and early time point
but that necrosis was prevalent with the increase in time/
dose [110, 135].

Lateral dimension
Nanoparticles with sizes <100 nm can enter the cell,
<40 nm can enter nucleus, and smaller than <35 nm can
cross the blood brain barrier [85]. One study showed
that GO (588, 556, 148 nm) did not enter A549 cells
and had no obvious cytotoxicity [112]. When the diam-
eter of graphene is between 100 ~ 500 nm, the smallest
size may cause the most severe toxicity, and when the
diameter is below 40 nm, the smallest sizes may be the
safest. For instance, rGO with a diameter of 11 ± 4 nm
could enter into the nucleus of the hMSCs and cause
chromosomal aberrations and DNA fragmentation at
very low concentrations of 0.1 and 1.0 mg/mL in 1 h.
However, rGO sheets with diameters of 3.8 ± 0.4 nm
exhibited no notable genotoxicity in hMSCs even at a
high dose of 100 mg/mL after 24 h [118].
In an in vivo study, s-GO (100–500 nm) preferentially

accumulated in the liver, whereas l-GO (1–5 μm) was
mainly located in the lungs because l-GO formed larger
GO-protein complexes that were filtered out by the
pulmonary capillary vessels after intravenously injection
[31]. Given the relative lateral sizes (205.8 nm, 146.8 nm
and 33.78 nm) of the three GO nanosheets at the same
concentration, smaller GO experiences much greater up-
take than larger GO in Hela cells [139]. The high uptake
of s-GO changed in the microenvironment of cells and
consequently induced the greatest viability loss and most
serious oxidative stress among three sizes of GO samples
[119]. As a result, one study delineated that GO size-
dependently induced the M1 polarization of macro-
phages and pro-inflammatory responses in vitro and in
vivo. Larger GO showed stronger adsorption onto the
plasma membrane with less phagocytosis, eliciting
robust interactions with TLRs and activating NF-κB
pathways, compared to smaller GO sheets, which were
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Table 2 Toxicity of GFNs in cell models
Graphene family
nanomaterias

Physiochemial properties and
Functionalization

Cells Dose and time incubation Effects Reference

Pristine graphene Thickness of 2–3 nm, size of
500–1000 nm

Murine RAW 264.7 macrophages 5, 10, 20, 40, 80 and 100 mg/
mL, 48 h

Depleted of the mitochondrial membrane
potential, increased ROS, triggered apoptosis

[83]

Pristine graphene Thickness of 3–5 nm, size of
100–110 nm

Rat pheochromocytoma cells
PC12 cells

10–100 μg/mL 1–48 h Increased LDH release, ROS levels and
caspase3 activation, induced apoptosis

[82]

Graphene oxide(GO) Four different diameters
(342–765 nm)

Human Erythrocytes
Human skin
fibroblasts CRL-2522

3.125-200 μg/mL 24 h Hemolytic activity, ROS generation, LDH
release, decreased cell viability

[106]

GO Thickness of 0.9 nm
lateral size: s-GO, 160 ± 90 nm;
m-GO, 430 ± 300 nm;
l-GO, 780 ± 410 nm

Human lung epithelial A549
cells

10, 25, 50, 100 and 200 μg/mL
24 h

Dose-dependent oxidative stress, cell viability
decreased at high concentration

[119]

GO Thickness of 1 nm, lateral
dimension of 200–500 nm

Human lung fibroblast cells HLF
cells

10–500 μg/mL 2–24 h Oxidative stress induced, concentration-
dependent cytotoxicity and genotoxicity

[148]

GO Size distribution: 592 ± 10.9 nm
in PBS, 1272 ± 56.2 nm in FBS

HeLa cells 0–80 μg/mL 24 h Released LDH, increased MDA and ROS
generation, decreased SOD, reduction of
cell viability,

[120]

GO smaller-sized GO: 50–350 nm
intermediate-sized GO: 350–750 nm
larger-sized GO: 750–1,300 nm

Macrophage cell J774A.1
THP-1 cells
HEK293 cells
MEL cells
HUT102 cells

20 μg/mL 1-24 h Size-dependent M1 induction of
macrophages,
pro-inflammatory responses

[94]

GO thickness: < 2 nm,
lateral size: 450 nm

Mouse CT26 colon carcinoma
cell

50–100 μg/mL 18 h Triggered autophagy, enhances cell death [206]

Reduced graphene oxide (rGO) Thickness of 11 ± 4 nm
lateral size of 3.8 ± 0.4 μm

Human mesenchymal stem
cells (hMSCs)

0.01–100 μg/mL 1–24 h Induced DNA fragmentations and
chromosomal aberrations

[118]

RGO Thickness of 7 nm
lateral size of 40 nm

human liver carcinoma
cells (HepG2 cells)

1–200 mg/L 4–72 h Dose-dependent DNA damage, oxidative
stress, cytotoxicity

[31]

RGO Lateral size of 100–1500 nm U87 and U118 glioma
cell lines

0–100 μg/mL 24 h Reduction of cell proliferation and cell
viability, induced apoptosis

[238]

Bacterially reduced graphene oxide
(B-rGO)

Thickness of 4.23 nm
average size of 3833 nm

MCF-7 cells 20–100 μg/mL 24–72 h Increased ROS generation, released LDH,
dose-dependent toxicity

[181]

Reduced graphene oxide
Nanoribbons(rGONR)

Thickness of 1 nm,
length of 10 μm,
width of 50–200 nm,

hMSCs 0.01, 0.1, 1.0, 10, 100 μg/mL
96 h

Caused DNA fragmentations and
chromosomal aberrations

[239]

Reduced graphene oxide sheets
(rGOSs)

Thicknesses of ~1.2 nm,
lateral sizes of ~2 μm

hMSCs 0.01, 0.1, 1.0, 10, 100 μg/mL
96 h

Caused slight cell membrane damage and
cytotoxicity

[239]

Graphene-dextran
(GO-DEX)

Thickness of 2.8 nm
size of 50–100 nm

HeLa cells 10, 50,200 mg/L 24, 48, 72 h GO-DEX remarkably reduced cell toxicity [91]

GNP-COOH
GNP-NH2

Thickness of GNP-COOH: 735.9 nm
thickness of GNP-NH2: 945.5 nm

Human bronchial epithelial
cells (BEAS-2B cells)

10, 50 mg/L 24 h Caused single stranded DNA damage,
genotoxicity and hypomethylation

[240]
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Table 2 Toxicity of GFNs in cell models (Continued)

PEG-DSPE (O-GNR-PEG-DSPE) Width of 125–220 nm, lengths
between of 500–2500 nm

HeLa cells
NIH-3 T3 cells
SKBR3 cells
MCF7 cells

10–400 μg/mL 24–48 h Dose-dependent and time-dependent
decrease in cell viability

[138]

PEI-GO,
PEG-GO,
LA-PEG-GO

Thickness of 1–2 nm lateral width of
100–500 nm

Human lung fibroblast cells 1, 10, 50, 100 μg/ml 24 h Caused concentration-dependent
cytotoxicity and genotoxicity

[15]

PEG-GQD Sizes of 3–5 nm HeLa cells and A549 cells 10–160 μg/mL 24 h No noticeable cytotoxicity [176]

FBS-GO Thickness of 4.0–18.0 nm A549 cells 0–200 μg/mL 24 h Cytotoxicity of GO was greatly mitigated
at 10 % FBS

[166]
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more likely taken up by cells [94]. To further uncover
the detailed mechanism underlying these effects, more
studies are needed to illustrate the vital mechanism of
the lateral size of graphene materials.

Surface structure
GFNs possess widely varying surface chemistries. For
example, the pristine graphene surface is hydrophobic,
GO surface is partially hydrophobic with carboxylate
groups [140–142], and rGO has intermediate hydrophi-
licity [143]. GFNs were observed to disrupt the function
and structure of cell membranes and proteins probably
by exceptionally strong molecular interactions with cells
[2, 91]. For instance, rGO bonded to cell membranes,
stimulated receptors and activated mitochondrial path-
ways, inducing apoptosis [110, 111, 144]. Limited evi-
dence showed that GO is smaller and less toxic than
rGO because of the high oxygen content, smoother
edges, and hydrophilic properties of the former species
[104, 145, 146]. Because of the different surface oxida-
tion states of GO and rGO, GO possessing distinct
hydrophilicity might be internalized and taken up by
HepG2 cells easily. On the contrary, rGO with evident
hydrophobicity, could be adsorbed and aggregated at cell
surfaces without (or with lower) uptake [110]. Due to
strong π-π stacking interactions, graphene is highly
capability of breaking many residues of the protein,
particularly the aromatic ones, such as the villin headpiece

(HP), F10, W23, and F35. The protein’s secondary and ter-
tiary structures are largely lying on the graphene surface,
disrupting the structure and function of the protein [41]
(Fig. 2). In addition, GO can insert between the base
pairs of double-stranded DNA and disturb the flow of
genetic information at the molecular level, which
might be one of the main causes of the mutagenic
effect of GO [7, 112, 146, 147].

Charge
A number of studies have highlighted the importance of
the GO surface charge because of its ability to affect the
internalization and uptake mechanism of cells [148–150].
GO internalization was negligible in non-phagocytes,
which was likely due to the strong electrostatic repulsion
between the negatively charged GO and the cell surface
[34]. However, others have suggested that negatively
charged nanoparticles can be internalized into non-
phagocytic cells by binding to available cationic sites
on the cell surface and be taken up by scavenger re-
ceptors [110, 146, 150]. GO/GS particles reportedly
cause morphological changes and significant lysis,
leading to high haemolysis in red blood cells (RBCs).
RBC membrane disruption is probably attributed to
the strong electrostatic interactions between the nega-
tively charged oxygen groups on the GO/GS surface
and positively charged phosphatidylcholine lipids on
the RBC outer membrane [106].

Fig. 2 A representative trajectory of HP35 adsorbing onto the graphene. (a) Representative snapshots at various time points. The proteins
are shown in cartoons with red helix and green loop, and the graphene is shown in wheat. The aromatic residues that form the π-π
stacking interactions are shown in blue, others are shown in green. (b) The contacting surface area of HP35 with the graphene. (c)
The RMSD of HP35 from its native structure and the number of residues in the α-helix structure. Here, the secondary structures are
determined by the DSSP program. (d) The distance between the graphene and the aromatic residues, including F35, W23, F10, F17,
and F06. To show the adsorbing process clearer, the χ-axis had been truncated and rescaled. [41] Copyright (2011), with permission
from Journal of Physical of Chemistry
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Functionalization
Studies confirmed that functionalization with PEG [52],
PEGylated poly-L-lysine (PLL) [151], poly(ε-caprolactone)
[152], polyvinyl alcohol [3], Pluronic [153], amine [98],
carboxyl, and dextran [79] groups largely decreases the
toxicity and improves the biocompatibility of graphene. In
vivo results revealed that only mild chronic inflammation
emerged after the subcutaneous injection of GO-Pluronic
hydrogel and no noticeable short-term toxicity was tested
after the intravenous injection of GO-DEX [79, 154].
PEGylated GS did not induce appreciable toxicity in mice
exposed to 20 mg/kg for 3 months, as evaluated by blood
biochemistry and histological examinations, and showed
relatively low retention in the RES [52, 155]. Coating GO
with chitosan almost eliminated the haemolytic activity in
blood [39]. Moreover, the PEG coating effectively allevi-
ated GO-induced acute tissue injuries; decreased GO
aggregation and retention in the liver, lungs, and spleen;
and promoted the clearance of GO [81], GO-DEX [79],
and fluorinated graphene oxide (FGO) [156].
In vitro, several cell function assays showed clear

evidence that the surface functionalization of pristine
graphene or GO was critical for reducing the strong
toxicity effects [91]. PEG-GO, PEI-GO and LA-PEG-GO
damaged human lung fibroblast cells less than GO
[148]. PEG-GO exhibited no cytotoxicity toward several
cell cultures, such as glioblastoma cells (U87MG), breast
cancer cells (MCF-7), human ovarian carcinoma cells
(OVCAR-3), colon cancer cells (HCT-116), and lympho-
blastoid cells (RAJI), at concentrations up to 100 μg/mL
[119, 157, 158]. GQDs-PEG exhibited very low or no
toxicity against lung and cervical cancer cells even at
very high concentrations (200 μg/mL) [159]. However, as
a non-biodegradable material with great potential for
cellular internalization, further investigation is needed to
assess the possible long-term adverse effects of function-
alized graphene.

Aggregations and sedimentation
Reportedly, nanomaterials have a propensity to form
aggregates rather than individual units, particularly under
physiological conditions. GS surfaces allowed fewer RBCs
attach comparing to GO, and GS had the lower haemo-
lytic activity for more aqueous aggregations formation. In
contrast, the fast sedimentation and aggregate formation
of GS greatly inhibited the nutrient availability of human
skin fibroblast cells that were grown on the bottom of
wells [106]. Therefore, the aggregations and sedimentation
of graphene particles exert varying effects on different
cells.

Impurities
Nanomaterial purity is an important consideration be-
cause residual, contaminating metals may be responsible

for the observed toxicity, rather than the nanomaterial
itself, which has resulted in conflicting data on GFNs
cytotoxicity [35, 160]. Traditionally prepared GO often
contains high levels of Mn2+ and Fe2+, which are highly
mutagenic to cells. The nonspecific release of these ions
from traditionally prepared GO might lead to unusually
high levels of cytotoxicity and DNA fracturing [39]. In
particular, Peng et al. [161] produced high-purity GO
containing only 0.025 ppm Mn2+ and 0.13 ppm Fe2+,
and Hanene et al. [162] invented a new method to
prepare high-purity, single-layer GO sheets with good
aqueous dispersibility and colloidal stability. GO pro-
duced by these new methods did not induce significant
cytotoxic responses (at exposure doses up to 100 μg/mL)
in vitro, and no obvious inflammatory response or
granuloma formation (exposure doses up to 50 μg/animal)
were observed in vivo. Therefore, the purity of GFNs
deserves attention and is a vital step towards the deter-
mination of GFNs involved in bioapplications.

Protein corona effect
Because of the high free surface charge, nanomaterials
can easily form “coronas” with proteins in biological
systems [163, 164]. The protein corona is suggested to
affect the circulation, distribution, clearance and toxicity
of nanoparticles. Several papers reported that GO forms
GO-protein coronas with adsorbed plasma proteins in
serum and these GO-protein coronas play an important
role in deciding the fate of the GO biokinetic behaviour
in vivo. Such GO-protein coronas can regulate the adhe-
sion of GO to endothelial and immune cells through
both specific and nonspecific interactions [165]. Basic-
ally, immunoglobulin G and complement proteins in
the protein corona help to reorganize nanoparticles in
immune cells, causing the particles to be engulfed by
the RES, and IgG-coated GO was taken up by either
specific or nonspecific interactions with cell membrane
receptors [31, 165]. However, another study found that
GO could not adhere to mucosal epithelial cells directly in
the intestinal tract after the filial mice drank an aqueous
GO solution because abundant proteins in the milk had
adsorbed on the surface of the GO and thus inhibited
their direct interaction with the mucosal epithelial cells
[53]. Protein corona mitigated the cytotoxicity of GO by
limiting its physical interaction with the cell membrane
and reducing the cellular morphological damage in HeLa,
THP-1 and A549 cells [166–168]. The cytotoxic effect
was largely reduced when GO was pre-coated with FBS
and incubated with cells; nearly ∼ 90 % survival was
observed with 100 μg/mL FBS-coated GO and 100 %
survival with 20 μg/mL FBS-coated GO. Similar trends
were observed for GO covered by BSA [166, 169]. Con-
sistently, additional serum could neutralize the toxicity of
pristine GO in J774.A1 cells at a dose of 4 μg/mL, which
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lead to a decrease in cell number of 52.5 % compared to
untreated cells [89].
After reviewing many studies, it can be concluded that

the toxicity of graphene is influenced by multiple factors.
Those factors combined to largely change the toxicity of
GFNs in many cases. Scientific studies often need the
clear identification of cause and effect, which should
keep only one factor different at a time, so that the effect
of that single factor can be determined. But in some
papers, several factors influencing GFNs toxicity were
studied at the same time, which led to confused results.

Possible toxicity mechanisms of GFNs
Although some physicochemical properties and the
toxicity of GFNs have been well studied by many
scholars, the exact mechanisms underlying the toxicity
of GFNs remain obscure. A schematic of the main mecha-
nisms of GFNs cytotoxicity is illustrated in Fig. 3.

Physical destruction
Graphene is a unique nanomaterial compared with other
spherical or one-dimensional nanoparticles due to its
two-dimensional structure with sp2-carbons. The phy-
sical interaction of graphene nanoparticles with cell
membranes is one of the major causes of graphene cyto-
toxicity [7, 170, 171]. Graphene has high capability to
bind with the α-helical structures of peptides because of
its favourable surface curvature [172]. At concentration
above 75 μg/mL, pristine graphene largely adhered to
the surfaces of RAW 264.7 cells and resulted in abnor-
mal stretching of the cell membrane [104]. The strong
hydrophobic interactions of GFNs with the cell mem-
brane lead to the morphological extension of F-actin
filopodial and cytoskeletal dysfunction. Furthermore, the
sharpened edges of GNS may act as ‘blades’, inserting
and cutting through bacterial cell membranes [173].
Moreover, GO also damaged the outer membrane of

Fig. 3 Schematic diagram showed the possible mechanisms of GFNs cytotoxicity. GFNs get into cells through different ways, which induce in
ROS generation, LDH and MDA increase, and Ca2+ release. Subsequently, GFNs cause kinds of cell injury, for instance, cell membrane damage,
inflammation, DNA damage, mitochondrial disorders, apoptosis or necrosis
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E. coli bacteria directly, resulting in the release of intracel-
lular components [173]. However, TEM imaging revealed
that pre-coating GO with FBS eliminated the destruction
of cell membranes [166].

ROS production leading to oxidative stress
Oxidative stress arises when increasing levels of ROS
overwhelm the activity of antioxidant enzymes, including
catalase, SOD, or glutathione peroxidase (GSH-PX)
[174]. ROS act as second messengers in many intracellu-
lar signalling cascades and lead to cellular macromolecu-
lar damage, such as membrane lipid breakdown, DNA
fragmentation, protein denaturation and mitochondrial
dysfunction, which greatly influence cell metabolism and
signalling [175–177]. The interactions of GO with cells
can lead to excessive ROS generation, which is the first
step in the mechanisms of carcinogenesis, ageing, and
mutagenesis [83, 122]. Oxidative stress had a significant
role in GO-induced acute lung injury [30], and the
inflammatory responses caused by oxidative stress often
emerged upon exposure to GFNs [133, 177, 178]. The
activity of SOD and GSH-PX decreased after exposed to
GO in a time- and dosage-dependent manner [82, 106,
119]. Similarly, oxidative stress was the key cause of
apoptosis and DNA damage after HLF cells were ex-
posed to GO [148]. Both the mitogen-activated protein
kinase (MAPK) (JNK, ERK and p38) and TGF-beta-
related signalling pathways were triggered by ROS gen-
eration in pristine graphene-treated cells, accompanied
by the activation of Bim and Bax, which are two pro-
apoptotic members of the Bcl-2 protein family. As a
result, caspase-3 and its downstream effector proteins
such as PARP were activated, and apoptosis was initiated
[83, 179]. Detailed information regarding the MAPK-,
TGF-β- and TNF-α-related signalling pathways, which
induce inflammation, apoptosis and necrosis, are sum-
marized in Fig. 4.

Mitochondrial damage
Mitochondria are energy production centres involved in
various signalling pathways in cells and are also a key
point of apoptotic regulation [83]. After exposure to GO
and carboxyl graphene (GXYG), the mitochondrial
membrane was depolarized, and the amount of mito-
chondria decreased in HepG2 cells [180]. Exposure to
GFNs resulted in significantly increased coupled and
uncoupled mitochondrial oxygen consumption, dissipa-
tion of the mitochondrial membrane potential, and
eventual triggering of apoptosis by activating the mito-
chondrial pathway [181]. For instance, GO increased the
activity of mitochondrial electron transport complexes I/
III and the supply of electrons to site I/II of the electron
transport chain, accelerating the generation of ROS dur-
ing mitochondrial respiration in MHS cells [99]. The

formation of •OH mediated by GO and the cytochrome-
c/H2O2 electron-transfer system could enhance oxidative
and thermal stress to impair the mitochondrial respi-
ration system and eventually result in dramatic toxicity
[151]. Additionally, the oxygen moieties on GO might
accept electrons from cellular redox proteins, supporting
the redox cycling of cytochrome c and electron transport
proteins, and cytochromes MtrA, MtrB, and MtrC/
OmcA might be involved in transferring electrons to
GO [182]. Therefore, except for the plasma membrane
damage and oxidative stress induction, GFNs can cause
apoptosis and/or cell necrosis by direct influencing cell
mitochondrial activity [183, 184].

DNA damage
Due to its small size, high surface area and surface
charge, GO may possess significant genotoxic properties
and cause severe DNA damage, for example, chromo-
somal fragmentation, DNA strand breakages, point
mutations, and oxidative DNA adducts and alterations
[87, 122, 185, 186]. Mutagenesis was observed in mice
after intravenous injection of GO at a dose of 20 mg/kg
compared with cyclophosphamide (50 mg/kg), a classic
mutagen [112]. Even if GO cannot enter into the nucleus
of a cell, it may still interact with DNA during mitosis
when the nuclear membrane breaks down, which increases
the opportunity for DNA aberrations [87, 147, 187, 188].
The π stacking interaction between the graphene carbon
rings and the hydrophobic DNA base pairs can make a
DNA segment ‘stand up’ or ‘lay on’ the surface of graphene
with its helical axis perpendicular or parallel, respectively.
The intermolecular forces severely deform the end base
pairs of DNA, which potentially increases the genotoxicity
[189]. GO may also induce chromosomal fragmentation,
DNA adducts and point mutations by promoting oxidative
stress or triggering inflammation through the activation of
intracellular signalling pathways such as MAPK, TGF-β
and NF-κB [110, 112, 146]. Graphene and rGO can also
elevate the expression of p53, Rad51, and MOGG1-1,
which reflect chromosomal damage, and decrease the
expression of CDK2 and CDK4 by arresting the cell cycle
transition from the G1 to the S phase in various cell lines
[112]. DNA damage can not only initiate cancer develop-
ment but also possibly threaten the health of the next
generation if the mutagenic potential of GO arises in repro-
ductive cells, which impacts fertility and the health of
offspring [112, 190].

Inflammatory response
GFNs can cause a significant inflammatory response in-
cluding inflammatory cell infiltration, pulmonary edema
and granuloma formation at high doses via intratracheally
instillation or intravenous administration [30, 49]. Plate-
lets are the important components in clot formation to
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attack pathogens and particulate matter during the in-
flammatory response, and GO could directly activate
platelet-rich thrombi formation to occlude lung vessels
after intravenous injection [98, 191]. A strong inflam-
matory response was induced by subcutaneously injec-
tion with GO for 21 days, along with the secretion of
key cytokines, including IL-6, IL-12, TNF-α, MCP-1,
and IFN-g [34, 192]. GFNs can trigger an inflammatory
response and tissue injury by releasing cytokines and
chemokines that lead to the recruitment of circulating
monocytes and stimulating the secretion of Th1/Th2
cytokines and chemokines [124, 193]. Additionally,
pristine graphene [193] and rGO [110] evoke an inflam-
matory response by binding to toll-like receptors
(TLRs) and activating the NF-κB signalling pathway in
cells. The NF-κB signalling cascade is triggered by
TLRs and pro-inflammatory cytokines such as IL-1 and
TNF-α. Upon activation, NF-κB shifts from the cytoplasm
to the nucleus, facilitating the binding of degrading IκB
and acting as a transcription factor to synthesize numer-
ous pro-inflammatory cytokines [194]. A schematic of the
signalling pathway of TLR4 and TLR9 activated by GFNs
is shown in Fig. 5.

Apoptosis
Apoptosis is defined as the self-destruction of a cell
regulated by genes through complicated programmes
[83, 195]. GO and rGO caused apoptosis and inflamma-
tion in mice lungs after inhalation [99], and GFNs also
had pro-apoptotic effects in cells [111, 113, 124, 196].
Additionally, graphene and GO physically damaged cell
membranes [166], increased the permeabilization of
the outer mitochondrial membrane and changed the
mitochondrial membrane potential; the increased ROS
triggered the MAPK and TGF-β signalling pathways
and activated caspase-3 via mitochondrial-dependent
apoptotic cascades, prompting the execution of apop-
tosis [83, 99]. Similarly, rGO caused apoptosis at a
low dose and an early time point, triggered by the
death-receptor and canonical mitochondrial pathway
[110]. Another study showed three different apoptosis
pathways by GFNs: GO led to ROS-dependent apop-
tosis through direct interaction with protein receptors
and subsequent activation of the B-cell lymphoma-2
(Bcl-2) pathway; GO-COOH transmitted a passive apop-
tosis signal to nuclear DNA by binding to protein recep-
tors and activating a ROS-independent pathway; However,

Fig. 4 Schematic diagram of MAPKs, TGF-beta and TNF-α dependent pathways involved in GFNs toxicity. ROS was the main factors activating the
MAPKs and TGF-beta signaling pathways to lead to the activation of Bim and Bax, triggering the cascade of caspases and JNK pathway. The
activation of caspase 3 and RIP1 resulted in apoptosis and necrosis finally
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GO-PEI severely damaged the membranes of T lympho-
cytes to trigger apoptosis [105, 197].

Autophagy
Autophagy is the process of self-degradation of cellular
components and recently recognized as non-apoptotic
cell death [198–200]. Autophagy activation requires
autophagosome formation containing Beclin 1, multiple
autophagy-related proteins (ATG), microtubule-associated
protein light chain 3 (LC3) and p62 [201]. Autophago-
some accumulation is associated with exposure to various
nanoparticles [202–205], and autophagy can remove
extracellular organisms and destruct the organisms in the
cytosol [206]. GO and GQDs was shown to induce autop-
hagosome accumulation and the conversion of LC3-I to
LC3-II; inhibit the degradation of the autophagic substrate
p62 protein [207, 208]. Furthermore, GO can simultan-
eously trigger TLR4 and TLR9 responses in macrophages
[34, 192] and colon cancer cells CT26 [206]. The autoph-
agy pathway is linked to phagocytosis by TLR signalling in
macrophages [206, 209].

Necrosis
Necrosis is an alternate form of cell death induced by
inflammatory responses or cellular injury. The expos-
ure of cells to pristine graphene causes apoptosis and
necrosis at high doses (50 mg/mL) [83]. Reportedly,
LDH leakage and the opening of the mitochondrial
permeability transition pore, induced by elevated level of
cytoplasmic Ca2+, lead to apoptosis/necrosis [210]. GO
treatment was revealed to induce macrophagic necro-
sis by activating TLR4 signalling and subsequently
partly triggering autocrine TNF-α production [93].
GO combined with CDDP (GO/CDDP) triggered necrosis
by decreasing RIP1 and increasing RIP3 proteins, accom-
panied with the release of high mobility group B1
(HMGB1) into the cytosol from the nucleus and out of
CT26 cells [205, 211, 212].

Epigenetic changes
Epigenetics involve DNA methylation, genomic imprin-
ting, maternal effects, gene silencing, and RNA editing
[213–215]. DNA methylation, which is one of the best-
studied epigenetic modifications, includes phosphorylation,

Fig. 5 A schematic diagram elucidating signalling pathway of TLR4 and TLR9 responsible for GFNs-induced cytotoxicity. GFNs can be recognized
by TLRs, thus activate IKK and IκB by a MyD88-dependent mechanism, resulting in the release of NF-κB subunits and initiating the translocation
into the nucleus. Thus, pro-inflammatory factors were transcribed and secreted out of nucleus, modulating the immune responses initiating
programmed autophagy, apoptosis and necrosis
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ubiquitination, and ATP-ribosylation and can lead to
chromatin remodelling [197, 216, 217]. A recently paper
reported that SL-GO/FL-GO exposure resulted in global
DNA hypermethylation through upregulating DNMT3B
and MBD1 genes; GNP treatment caused hypomethylation
by decreasing the expression of DNMT3B and MBD1
genes [216]. GO could activate the miRNA-360 regulation
pathway to suppress the DNA damage-apoptosis signalling
cascade by affecting the component of CEP-1 [218]. Taken
together, these data suggest that GFNs could cause subtle
changes in gene expression programming by modulating
epigenetic changes. However, studies of GFNs-induced
epigenetic changes are few, and the epigenetic mechanism
caused by GFNs exposure is not fully understood.
To conclude, many studies have discussed representa-

tive mechanisms of GFNs toxicity involving four signal-
ling pathways: TLRs, TGF-β, TNF-α and MAPKs.
These four signalling pathways are correlative and
cross-modulatory, making the inflammatory response,
autophagy, apoptosis and other mechanisms independent
and yet connected to each other. Additionally, oxidative
stress appears to play the most important role in activa-
ting these signalling pathways. It has been reported that
there are intersections of apoptosis, autophagy and necro-
sis in the studies of other nanomaterials toxicity, they
inhibit or promote mutually in some conditions. However,
the signalling pathways of GFNs toxicity investigated in
papers to date are only a small part of an intricate web,
and the network of signalling pathways needs to be
explored in detail in the future.

Data gaps and future studies
Currently, the literature is insufficient to draw conclu-
sions about the potential hazards of GFNs. Two opposite
opinions have begun to emerge: some researchers
suggested that graphene materials are biocompatible in a
number of studies focused on biomedical applications
[119, 154, 162, 219], and other studies reported adverse
biological responses and cytotoxicity [32, 118, 135, 138,
192]. These inconsistent results might have been caused
by several factors, including the different research
groups, various cellular or animal models, and varying
physicochemical characterizations of GFNs. When GFNs
are explored for in vivo applications in the human body
or some other biomedical applications, biocompatibility
must be considered, and more detailed and accurate
studies of GFNs toxicity are needed.
First, detailed physicochemical characterization is im-

perative in all future studies of GFNs toxicity. In the
experiments, feature descriptions of GFNs should in-
clude their size, morphology, surface area, charge, sur-
face modifications, purity, and agglomeration [88, 141,
148, 162]. Because these physicochemical factors largely

influence the toxicity and biocompatibility of GFNs,
single-factor experimental designs and the exclusion of
other interfering factors should be considered. Details
of the fabrication process should also be provided because
the formed oxidative debris could largely alter the surface
structure of graphene and GO during functionalization
[151]. Importantly, a single, universal method needs to be
established in graphene technology, which will allow for
better comparison of data from different studies or diffe-
rent laboratories.
Second, different observational criteria, parameters

and selection of experimental methods might induce
large inter-laboratory variations [220, 221]. For example,
the MTT assay always fails to accurately predict graphene
toxicity because the spontaneous reduction results in a
false positive signal. Therefore, appropriate alternative
assessments should be utilized, such as the water-soluble
tetrazolium salt reagent (WST-8), ROS assay, and trypan
blue exclusion test [106, 222]. Additionally, the comet
assay often shows higher levels of DNA damage than the
micronucleus assay because the former measures the
repairable injury and the latter measures the gene damage
that remains after cell division [159, 223]. Therefore,
caution is required in choosing the most appropriate assay
to evaluate the toxicity of graphene materials to avoid
false-positive results.
Third, the selection of cell lines is of vital importance

because cancer cell lines tend to be sensitive or resistant
depending upon their genetic background. The same
graphene nanoparticles can cause different reactions
depending on their various cells origins. Suitable cell
lines with good stability must be used to avoid false posi-
tive or negative results. Primary cells derived from
humans or animals can better simulate the health condi-
tions of humans. A large amount of primary cells have
been utilized to test the toxicity of other nanomaterials
[224–228], but the culturing of primary cells is extremely
rare in the experiments with GFNs to date [210, 229].
Various cell experiments combined with primary cells
should be performed to comprehensively evaluate the
physicochemical properties and toxicity of GFNs.
Fourth, the administration route of GFNs plays a very

important role in toxicity studies, and different delivery
methods will result in different toxicological reactions
[32, 53]. Thus, the route and period of exposure should
be carefully chosen according to the aim of the study.
Nasal drug delivery is often used to study the neurotox-
icity of nanomaterials [230, 231], but this administration
method has rarely been applied in the testing of GFNs
toxicity. Toxicological studies of GFNs in the nervous
system are rare, and the mechanism is unclear and needs
to be studied further in the future. Recent toxicokinetic
studies involving the absorption, distribution, metabolism,
accumulation, and excretion of GFNs through different
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exposure routes have yielded some results but are far from
sufficient to clarify the internal complex mechanisms. For
instance, further studies are needed to understand the spe-
cific molecular mechanisms of GFNs passing through the
physiological barriers and the amount of accumulation or
the excretion period of GFNs in tissues. In addition, given
the increased exposure of humans to GFNs, the assess-
ment of systemic toxicity in the human body is indispens-
able in future studies.
Fifth, another important issue requiring attention is

the long-term fate of GFNs after entering the body or
being taken up by cells. Most recent studies have con-
sisted of short-term toxicity assessments [89, 232], and
long-term toxic injury has not received much attention
since the widespread application of GFNs in 2008. More-
over, a functionalized graphene surface can improve its
biocompatibility, but the long-term stability of the surface
coatings should be considered [233]. If the surface coat-
ings eventually break down, their toxicity may be signifi-
cantly different from the short-term exposure results.
Extended studies are needed to determine if longer
treatment times influence the nanotoxic potential of
GFNs.
Sixth, more specific signalling pathways in the mech-

anism of GFNs toxicity need to be discovered and eluci-
dated. Currently, several typical toxicity mechanisms of
GFNs have been illustrated and widely accepted, such as
oxidative stress, apoptosis, and autophagy. However,
these mechanisms have only been described in general
terms, and the specific signalling pathways within these
mechanisms need to be investigated in detail. The sig-
nalling pathways involved in the toxicity of other nano-
materials may also be relevant to the study of GFNs.
Therefore, more signalling pathways should be detected
in future research. For instance, nano-epigenetics has
been considered in numerous studies of nanomaterials,
which is also helpful in assessing the limited toxicity and
side effects of GFNs. Recent studies have shown that
GFNs could cause epigenetic and genomic changes that
might stimulate physical toxicity and carcinogenicity
[234]. GFNs have high surface areas, smooth continuous
surfaces and bio-persistence, similar to the properties of
tumorigenic solid-state implants. It is unknown whether
GFNs have the potential to induce foreign body sarco-
mas, and definitive studies of tumour potentialities or
risks of graphene should therefore be conducted as
soon as possible.

Conclusions
In the past few years, GFNs have been widely utilized in
a wide range of technological and biomedical fields.
Currently, most experiments have focused on the tox-
icity of GFNs in the lungs and livers. Therefore, studies
of brain injury or neurotoxicity deserve more attention

in the future. Many experiments have shown that GFNs
have toxic side effects in many biological applications,
but the in-depth study of toxicity mechanisms is urgently
needed. In addition, contrasting results regarding the
toxicity of GFNs need to be addressed by effective expe-
rimental methods and systematic studies. This review
provides an overview of the toxicity of GFNs by summa-
rizing the toxicokinetics, toxicity mechanisms and influen-
cing factors and aimed to provide information to facilitate
thorough research on the in vitro and in vivo haemo- and
biocompatibility of GFNs in the future. This review will
help address safety concerns before the clinical and
therapeutic applications of GFNs, which will be im-
portant for further development of GFNs in biological
applications.
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